资源类型

期刊论文 605

会议视频 8

年份

2023 50

2022 62

2021 50

2020 54

2019 35

2018 38

2017 37

2016 28

2015 31

2014 31

2013 20

2012 35

2011 30

2010 14

2009 22

2008 17

2007 16

2006 2

2005 3

2004 4

展开 ︾

关键词

碳中和 5

节能减排 4

可持续发展 3

SARS-CoV-2 2

中药 2

催化剂 2

光催化 2

减灾 2

半旱地农业 2

地位 2

情景分析 2

油气资源 2

温室气体 2

潜力 2

资源潜力 2

2 1

2021全球工程前沿 1

4-二硝基茴香醚 1

Pm21 1

展开 ︾

检索范围:

排序: 展示方式:

Comparison of different valent iron on anaerobic sludge digestion: Focusing on oxidation reduction potential

《环境科学与工程前沿(英文)》 2022年 第16卷 第6期 doi: 10.1007/s11783-021-1514-3

摘要:

• ORP value from −278.71 to −379.80 mV showed indiscernible effects on methane yield.

关键词: Enhanced anaerobic sludge digestion     Different iron valence     Oxidation reduction potential     Dissolved organic nitrogen     Microbial community    

Novel coprecipitation–oxidation method for recovering iron from steel waste pickling liquor

Shejiang Liu, Hongyang Yang, Yongkui Yang, Yupeng Guo, Yun Qi

《环境科学与工程前沿(英文)》 2017年 第11卷 第1期 doi: 10.1007/s11783-017-0902-1

摘要: Coprecipitation–oxidation method was developed to recover the iron from wastewater. Fe O nanoparticles were well synthesized from steel waste pickling liquor. Promoters greatly improved the properties of synthesized Fe O nanoparticle. Real-time control of the Fe /Fe molar ratio was achieved by ORP monitoring. Waste pickling liquors (WPLs) containing high concentrations of iron and acid are hazardous waste products from the steel pickling processes. A novel combined coprecipitation–oxidation method for iron recovery by Fe O nanoparticle production from the WPLs was developed in this study. An oxidation–reduction potential monitoring method was developed for real-time control of the Fe /Fe molar ratio. The key coprecipitation–oxidation parameters were determined using the orthogonal experimental design method. The use of promoters greatly improved the Fe O nanoparticle crystallinity, size, magnetization, and dispersion. X-ray diffraction patterns showed that the produced Fe O nanoparticles were single phase. The Fe O nanoparticles were approximately spherical and slightly agglomerated. Vibrating sample magnetometry showed that the Fe O nanoparticles produced from the WPLs had good magnetic properties, with a saturation magnetization of 80.206 emu·g and a remanence of 10.500 emu·g . The results show that this novel coprecipitation–oxidation method has great potential for recycling iron in WPLs.

关键词: Waste pickling liquor     Coprecipitation–oxidation     Fe3O4 nanoparticles     Oxidation–reduction potential     Promoter    

Advanced nitrogen removal by pulsed sequencing batch reactors (SBR) with real-time control

YANG Qing, PENG Yongzhen, YANG Anming, LI Jianfeng, GUO Jianhua

《环境科学与工程前沿(英文)》 2007年 第1卷 第4期   页码 488-492 doi: 10.1007/s11783-007-0078-1

摘要: The feasibility of pH and oxidation reduction potential (ORP) as on-line control parameters to advance nitrogen removal in pulsed sequencing batch reactors (SBR) was evaluated. The pulsed SBR, a novel operational mode of SBR, was

关键词: reduction potential     oxidation reduction     operational     feasibility     nitrogen    

Effect of environment change on the strength of cement/lime treated clays

Takenori HINO, Rui JIA, Seiji SUEYOSHI, Tri HARIANTO

《结构与土木工程前沿(英文)》 2012年 第6卷 第2期   页码 153-165 doi: 10.1007/s11709-012-0153-y

摘要: The field strengths of cement/lime treated clays were investigated in the Ariake Sea costal lowlands. The deposition environment of the investigation location is reconstructed and compared to the present ground environment. The mechanism of the ground environment change and its effect on the strength of cement/lime treated soil are discussed. The strength development of improved soil using cement and lime in different curing environments was investigated in the laboratory for studying the effect of environment change on the strength also. It has been found that the strength deterioration of improved soil in deep mixing method is due to 1) the ground environment change due to the secondary oxidation which results in low pH value and high organic content, and 2) the formations of the porous structures result from the elution of the calcium ions. Also, it has been found that the initial strength increase of the improved soil is related to the dissolved silica and that the dissolution of the silica in clay minerals needs long time. When examining the long-term strength for preventing strength degradation, the effect of environmental change has to be considered. The importance of measuring pH and oxidation-reduction potential (ORP) of the ground for cement/lime solidification method is explained.

关键词: soil solidification     ground environment     strength deterioration     pH     oxidation-reduction potential (ORP)     silica    

Development of an H reduction and moderate oxidation method for 3,5-dimethylpyridine hydrogenation in

《化学科学与工程前沿(英文)》 2022年 第16卷 第12期   页码 1807-1817 doi: 10.1007/s11705-022-2243-2

摘要: The Ru/C catalyst prepared by impregnation method was used for hydrogenation of 3,5-dimethylpyridine in a trickle bed reactor. Under the same reduction conditions (300 °C in H2), the catalytic activity of the non-in-situ reduced Ru/C-n catalyst was higher than that of the in-situ reduced Ru/C-y catalyst. Therefore, an in-situ H2 reduction and moderate oxidation method was developed to increase the catalyst activity. Moreover, the influence of oxidation temperature on the developed method was investigated. The catalysts were characterized by Brunauer–Emmett–Teller method, hydrogen temperature programmed reduction H2-TPR, hydrogen temperature-programmed dispersion (H2-TPD), X-ray diffraction, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, O2 chemisorption and oxygen temperature-programmed dispersion (O2-TPD) analyses. The results showed that there existed an optimal Ru/RuOx ratio for the catalyst, and the highest 3,5-dimethylpyridine conversion was obtained for the Ru/C-i1 catalyst prepared by in-situ H2 reduction and moderate oxidation (oxidized at 100 °C). Excessive oxidation (200 °C) resulted in a significant decrease in the Ru/RuOx ratio of the in-situ H2 reduction and moderate oxidized Ru/C-i2 catalyst, the interaction between RuOx species and the support changed, and the hard-to-reduce RuOx species was formed, leading to a significant decrease in catalyst activity. The developed in-situ H2 reduction and moderate oxidation method eliminated the step of the non-in-situ reduction of catalyst outside the trickle bed reactor.

关键词: Ru/C catalyst     in-situ H2 reduction and moderate oxidation     in-situ reduction     non-in-situ reduction     hydrogenation of 3     5-dimethylpyridine    

Biological conversion pathways of sulfate reduction ammonium oxidation in anammox consortia

Zhen Bi, Deqing Wanyan, Xiang Li, Yong Huang

《环境科学与工程前沿(英文)》 2020年 第14卷 第3期 doi: 10.1007/s11783-019-1217-1

摘要: The SRAO phenomena tended to occur only under certain conditions. High amount of biomass and non-anaerobic condition is requirement for SRAO. Anammox bacteria cannot oxidize ammonium with sulfate as electron acceptor. AOB and AnAOB are mainly responsible for ammonium conversion. Heterotrophic sulfate reduction mainly contributed to sulfate conversion. For over two decades, sulfate reduction with ammonium oxidation (SRAO) had been reported from laboratory experiments. SRAO was considered an autotrophic process mediated by anammox bacteria, in which ammonium as electron donor was oxidized by the electron acceptor sulfate. This process had been attributed to observed transformations of nitrogenous and sulfurous compounds in natural environments. Results obtained differed largely for the conversion mole ratios (ammonium/sulfate), and even the intermediate and final products of sulfate reduction. Thus, the hypothesis of biological conversion pathways of ammonium and sulfate in anammox consortia is implausible. In this study, continuous reactor experiments (with working volume of 3.8L) and batch tests were conducted under normal anaerobic (0.2≤DO<0.5 mg/L) / strict anaerobic (DO<0.2 mg/L) conditions with different biomass proportions to verify the SRAO phenomena and identify possible pathways behind substrate conversion. Key findings were that SRAO occurred only in cases of high amounts of inoculant biomass under normal anaerobic condition, while absent under strict anaerobic conditions for same anammox consortia. Mass balance and stoichiometry were checked based on experimental results and the thermodynamics proposed by previous studies were critically discussed. Thus anammox bacteria do not possess the ability to oxidize ammonium with sulfate as electron acceptor and the assumed SRAO could, in fact, be a combination of aerobic ammonium oxidation, anammox and heterotrophic sulfate reduction processes.

关键词: Anammox bacteria     Autotrophic     Biological conversion     Sulfate reducing ammonium oxidation (SRAO)    

Revealing the GHG reduction potential of emerging biomass-based CO utilization with an iron cycle system

《环境科学与工程前沿(英文)》 2023年 第17卷 第10期 doi: 10.1007/s11783-023-1727-8

摘要:

● Greenhouse gas mitigation by biomass-based CO2 utilization with a Fe cycle system.

关键词: Carbon dioxide utilization     Hydrothermal reactions     Biomass-based CO2 reduction     Simulation     Ex-ante LCA    

Study on emissions reduction of DMCC engine with oxidation catalyst

YAO Chunde, LIU Xibo, WANG Hongfu, LIU Xiaoping, CHENG Chuanhui, WANG Yinshan

《能源前沿(英文)》 2007年 第1卷 第4期   页码 441-445 doi: 10.1007/s11708-007-0064-4

摘要: A new combustion model diesel/methanol compound combustion (DMCC) is presented, in which methanol is injected into manifold and ignited by certain amount of diesel fuel. The results showed that DMCC remarkably decreased the emission

关键词: combustion     manifold     DMCC     emission     diesel/methanol compound    

Iron oxidation-reduction and its impacts on cadmium bioavailability in paddy soils: a review

Chunhua ZHANG, Ying GE, Huan YAO, Xiao CHEN, Minkun HU

《环境科学与工程前沿(英文)》 2012年 第6卷 第4期   页码 509-517 doi: 10.1007/s11783-012-0394-y

摘要: Redox conditions in paddy soils may vary as they are submerged and drained during rice growth. This change may bring about reductive dissolution of iron (Fe) oxides and subsequent formation of secondary Fe-bearing minerals in rice paddies. The mobility and bioavailability of metal contaminants such as cadmium (Cd) in paddy soils are closely related to the chemical behaviors of Fe. Therefore, in this paper, advances in the study of paddy Fe redox transformations and their effects on Cd availability to rice are briefly reviewed. Current concepts presented in this review include the forms of Fe in paddy soils, the reactions involved in Fe oxidation-reduction, chemical factors affecting Fe redox processes, Cd availability to rice and the impacts of Fe transformation on Cd uptake and translocation in rice. Prospects for future research in this area are also discussed.

关键词: paddy soil     redox     iron     cadmium     bioavailability     rice    

Reduction kinetics of SrFeO/CaO∙MnO nanocomposite as effective oxygen carrier for chemical looping partialoxidation of methane

《化学科学与工程前沿(英文)》 2022年 第16卷 第12期   页码 1726-1734 doi: 10.1007/s11705-022-2188-5

摘要: Chemical looping reforming of methane is a novel and effective approach to convert methane to syngas, in which oxygen transfer is achieved by a redox material. Although lots of efforts have been made to develop high-performance redox materials, a few studies have focused on the redox kinetics. In this work, the kinetics of SrFeO3−δ–CaO∙MnO nanocomposite reduction by methane was investigated both on a thermo-gravimetric analyzer and in a packed-bed microreactor. During the methane reduction, combustion occurs before the partial oxidation and there exists a transition between them. The weight loss due to combustion increases, but the transition region becomes less inconspicuous as the reduction temperature increased. The weight loss associated with the partial oxidation is much larger than that with combustion. The rate of weight loss related to the partial oxidation is well fitted by the Avrami–Erofeyev equation with n = 3 (A3 model) with an activation energy of 59.8 kJ∙mol‒1. The rate law for the partial oxidation includes a solid conversion term whose expression is given by the A3 model and a methane pressure-dependent term represented by a power law. The partial oxidation is half order with respect to methane pressure. The proposed rate law could well predict the reduction kinetics; thus, it may be used to design and/or analyze a chemical looping reforming reactor.

关键词: chemical looping reforming     SrFeO3−δ/CaO·MnO nanocomposite     reduction kinetics     Avrami–Erofeyev model     pressure-dependent term    

Reduction potential of the energy penalty for CO capture in CCS

《能源前沿(英文)》 2023年 第17卷 第3期   页码 390-399 doi: 10.1007/s11708-023-0864-x

摘要: CO2 capture and storage (CCS) has been acknowledged as an essential part of a portfolio of technologies that are required to achieve cost-effective long-term CO2 mitigation. However, the development progress of CCS technologies is far behind the targets set by roadmaps, and engineering practices do not lead to commercial deployment. One of the crucial reasons for this delay lies in the unaffordable penalty caused by CO2 capture, even though the technology has been commonly recognized as achievable. From the aspects of separation and capture technology innovation, the potential and promising direction for solving this problem were analyzed, and correspondingly, the possible path for deployment of CCS in China was discussed. Under the carbon neutral target recently proposed by the Chinese government, the role of CCS and the key milestones for deployment were indicated.

关键词: CO2 capture and storage (CCS)     CO2 separation     energy penalty    

Trophic mode and organics metabolic characteristic of fungal community in swine manure composting

Jing Peng, Ke Wang, Xiangbo Yin, Xiaoqing Yin, Mengfei Du, Yingzhi Gao, Philip Antwi, Nanqi Ren, Aijie Wang

《环境科学与工程前沿(英文)》 2019年 第13卷 第6期 doi: 10.1007/s11783-019-1177-5

摘要: Fungal trophic modes and substrates utilization ability was observed in composting. Fungi had the higher diversity and more trophic types in thermophilic phase. Fungi had the higher metabolic potential in fresh swine manure and mature production. Redox potential, organics and moisture are main factors impacting fungal community. Composting reduced pathogenic fungi and enrich dung saprotroph fungi in swine manure. The succession of fungal community, trophic mode and metabolic characteristics were evaluated in 60 days composting of swine manure by high-throughput sequencing, FUNGuild and Biolog method, respectively. The result showed that the fungal community diversity reached to the highest level (76 OTUs) in the thermophilic phase of composting, then sustained decline to 15 OTUs after incubation. There were 10 fungal function groups in the raw swine manure. Pathotroph-saprotroph fungi reached to 15.91% on Day-10 but disappeared on Day-60. Dung saprotroph-undefined saprotroph fungi grown from 0.19% to 52.39% during the treatment. The fungal community had more functional groups but the lower substrate degradation rates in the thermophilic phase. The fungal communities on Day-0 and Day-60 had the highest degradation rates of amino acids and polymers, respectively. Redundancy analysis showed that ORP (49.6%), VS/Ash (45.3%) and moisture (39.2%) were the main influence factors on the succession of fungal community in the swine manure composting process.

关键词: Fungus     FUNGuild     Biolog     Trophic mode     Composting     Oxidation reduction potential    

Sludge reduction during brewery wastewater treatment by hydrolyzation-food chain reactor system

LI Lijie, YANG Shuo, WANG Qunhui, LI Xuesong

《环境科学与工程前沿(英文)》 2008年 第2卷 第1期   页码 32-35 doi: 10.1007/s11783-008-0025-9

摘要: During brewery wastewater treatment by a hydrolyzation-food chain reactor (FCR) system, sludge was recycled to the anaerobic segment. With the function of hydrolyzation acidification in the anaerobic segment and the processes of aerobic oxidation and antagonism, predation, interaction and symbiosis among microbes in multilevel oxidation segment, residual sludge could be reduced effectively. The 6-month dynamic experiments show that the average chemical oxygen demand (COD) removal ratio was 92.6% and average sludge production of the aerobic segment was 8.14%, with the COD of the influent at 960–1720 mg/L and hydraulic retention time (HRT) of 12 h. Since the produced sludge could be recycled and hydrolyzed in the anaerobic segment, no excess sludge was produced during the steady running for this system.

关键词: FCR     interaction     antagonism     oxidation     brewery wastewater    

Redox reactions of iron and manganese oxides in complex systems

Jianzhi Huang, Huichun Zhang

《环境科学与工程前沿(英文)》 2020年 第14卷 第5期 doi: 10.1007/s11783-020-1255-8

摘要: • Mechanisms of redox reactions of Fe- and Mn-oxides were discussed. • Oxidative reactions of Mn- and Fe-oxides in complex systems were reviewed. • Reductive reaction of Fe(II)/iron oxides in complex systems was examined. • Future research on examining the redox reactivity in complex systems was suggested. Conspectus Redox reactions of Fe- and Mn-oxides play important roles in the fate and transformation of many contaminants in natural environments. Due to experimental and analytical challenges associated with complex environments, there has been a limited understanding of the reaction kinetics and mechanisms in actual environmental systems, and most of the studies so far have only focused on simple model systems. To bridge the gap between simple model systems and complex environmental systems, it is necessary to increase the complexity of model systems and examine both the involved interaction mechanisms and how the interactions affected contaminant transformation. In this Account, we primarily focused on (1) the oxidative reactivity of Mn- and Fe-oxides and (2) the reductive reactivity of Fe(II)/iron oxides in complex model systems toward contaminant degradation. The effects of common metal ions such as Mn2+ , Ca2+, Ni2+, Cr3+ and Cu2+, ligands such as small anionic ligands and natural organic matter (NOM), and second metal oxides such as Al, Si and Ti oxides on the redox reactivity of the systems are briefly summarized.

关键词: Iron oxides     manganese oxides     reduction     oxidation     complex systems     reaction kinetics and mechanisms    

China’s pre-2020 CO

Hailin WANG

《能源前沿(英文)》 2019年 第13卷 第3期   页码 571-578 doi: 10.1007/s11708-019-0640-0

摘要: China achieved the reduction of CO intensity of GDP by 45% compared with 2005 at the end of 2017, realizing the commitment at 2009 Copenhagen Conference on emissions reduction 3 years ahead of time. In future implementation of the “13th Five-Year Plan (FYP),” with the decline of economic growth rate, decrease of energy consumption elasticity and optimization of energy structure, the CO intensity of GDP will still have the potential for decreasing before 2020. By applying KAYA Formula decomposition, this paper makes the historical statistics of the GDP energy intensity decrease and CO intensity of energy consumption since 2005, and simulates the decrease of CO intensity of GDP in 2020 and its influences on achieving National Determined Contribution (NDC) target in 2030 with scenario analysis. The results show that China’s CO intensity of GDP in 2020 is expected to fall by 52.9%–54.4% than the 2005 level, and will be 22.9%–25.4% lower than 2015. Therefore, it is likely to overfulfill the decrease of CO intensity of GDP by 18% proposed in the 13th FYP period. Furthermore, the emission reduction potentiality before 2020 will be conducive to the earlier realization of NDC objectives in 2030. China’s CO intensity of GDP in 2030 will fall by over 70% than that in 2005, and CO emissions peak will appear before 2030 as early as possible. To accelerate the transition to a low-carbon economy, China needs to make better use of the carbon market, and guide the whole society with carbon price to reduce emissions effectively. At the same time, China should also study the synergy of policy package so as to achieve the target of emission reduction.

关键词: China’s National Determined Contribution     emission reduction potential     scenario analysis     CO2 emissions peak    

标题 作者 时间 类型 操作

Comparison of different valent iron on anaerobic sludge digestion: Focusing on oxidation reduction potential

期刊论文

Novel coprecipitation–oxidation method for recovering iron from steel waste pickling liquor

Shejiang Liu, Hongyang Yang, Yongkui Yang, Yupeng Guo, Yun Qi

期刊论文

Advanced nitrogen removal by pulsed sequencing batch reactors (SBR) with real-time control

YANG Qing, PENG Yongzhen, YANG Anming, LI Jianfeng, GUO Jianhua

期刊论文

Effect of environment change on the strength of cement/lime treated clays

Takenori HINO, Rui JIA, Seiji SUEYOSHI, Tri HARIANTO

期刊论文

Development of an H reduction and moderate oxidation method for 3,5-dimethylpyridine hydrogenation in

期刊论文

Biological conversion pathways of sulfate reduction ammonium oxidation in anammox consortia

Zhen Bi, Deqing Wanyan, Xiang Li, Yong Huang

期刊论文

Revealing the GHG reduction potential of emerging biomass-based CO utilization with an iron cycle system

期刊论文

Study on emissions reduction of DMCC engine with oxidation catalyst

YAO Chunde, LIU Xibo, WANG Hongfu, LIU Xiaoping, CHENG Chuanhui, WANG Yinshan

期刊论文

Iron oxidation-reduction and its impacts on cadmium bioavailability in paddy soils: a review

Chunhua ZHANG, Ying GE, Huan YAO, Xiao CHEN, Minkun HU

期刊论文

Reduction kinetics of SrFeO/CaO∙MnO nanocomposite as effective oxygen carrier for chemical looping partialoxidation of methane

期刊论文

Reduction potential of the energy penalty for CO capture in CCS

期刊论文

Trophic mode and organics metabolic characteristic of fungal community in swine manure composting

Jing Peng, Ke Wang, Xiangbo Yin, Xiaoqing Yin, Mengfei Du, Yingzhi Gao, Philip Antwi, Nanqi Ren, Aijie Wang

期刊论文

Sludge reduction during brewery wastewater treatment by hydrolyzation-food chain reactor system

LI Lijie, YANG Shuo, WANG Qunhui, LI Xuesong

期刊论文

Redox reactions of iron and manganese oxides in complex systems

Jianzhi Huang, Huichun Zhang

期刊论文

China’s pre-2020 CO

Hailin WANG

期刊论文